phpKF - php Kolay Forum  
Ana Sayfa  |  Yardım  |  Üyeler  |  Giriş  |  Kayıt
 
Forumunuz Hayırlı olsun yenilendi

Resim Ekleme

Bu Sayfadaki Bilgiler 04/05/2007 tarihli ve 5651 sayılı
Bu Sayfadaki Bilgiler 04/05/2007 tarihli ve 5651 sayılı "İnternet Ortamında Yapılan Yayınların Düzenlenmesi ve Bu Yayınlar Yoluyla İşlenen Suçlarla Mücadele Edilmesi Hakkında Kanun" Uyarınca Gerekli Durumlarda İletişim Sağlanabilmesi İçin Eklenmiştir. Lütfen Gerekli Durumlarda Kullanınız... İbrahim uzun Esatpaşa mah 3.demiryollu 1201.sk no:28 menemen/izmir/Türkiye email :Uzun_70@hotmail.com
Forum Ana Sayfası  »  Matamatik
 »  Fonksiyonların tanımı

Yeni Başlık  Cevap Yaz
Fonksiyonların tanımı           (gösterim sayısı: 1.876)
Yazan Konu içeriği

boşluk

lovepowerman
[lovepowerman]
lovepowerman

Kullanıcı Resmi

Kayıt Tarihi: 13.09.2010
İleti Sayısı: 2.589
Şehir: İzmir
Durum: Forumda Değil

E-Posta Gönder
Web Adresi
Özel ileti Gönder

Konu Tarihi: 10.10.2010- 10:20
Alıntı yaparak cevapla  



Fonksiyonların tanımı
A. TANIM
A ¹ Æ ve B ¹ Æ olmak üzere, A dan B ye bir b bağıntısı verilmiş olsun. A nın her elemanı B nin elemanlarıyla en az bir kez ve en çok bir kez eşleniyorsa bu bağıntıya fonksiyon denir. Fonksiyonlar f ile gösterilir.
" x Î A ve y Î B olmak üzere, A dan B ye bir f fonksiyonu f : A ® B ya da x ® f(x) = y biçiminde gösterilir.
Yukarıda A dan B ye tanımlanan f fonksiyonu
f = {(a, 1), (b, 1), (c, 2)..ç (d, 3)}
biçiminde de gösterilir.
Ü Her fonksiyon bir bağıntıdır. Fakat her bağıntı fonksiyon olmayabilir.
Ü Görüntü kümesi değer kümesinin alt kümesidir.
Ü s(A) = m ve s(B) = n olmak üzere,
A dan B ye nm tane fonksiyon tanımlanabilir.
B den A ya mn tane fonksiyon tanımlanabilir.
A dan B ye tanımlanabilen fonksiyon olmayan bağıntıların sayısı 2m . n – nm dir.
Ü Grafiği verilen bir bağıntının fonksiyon olup olmadığını anlamak için, y eksenine paralel doğrular çizilir. Bu doğrular fonksiyonun belirttiği eğride en az bir ve en çok bir noktayı kesi-yorsa verilen bağıntı x ten y ye bir fonksiyondur.
B. FONKSİYONLARDA DÖRT İŞLEM
f ve g birer fonksiyon olsun.
f : A ® IR
g : B ® IR
olmak üzere,
i) f ± g: A Ç B ® IR
(f ± g)(x) = f(x) ± g(x)
ii) f . g: A Ç B ® IR
(f . g)(x) = f(x) . g(x)
C. FONKSİYON ÇEŞİTLERİ
1. Bire Bir Fonksiyon
Bir fonksiyonda farklı elemanların görüntüleri de farklıysa fonksiyon bire birdir.
" x1, x2 Î A için, f(x1) = f(x2)iken
x1 = x2 ise f fonksiyonu bire birdir.
Ü s(A) = m ve s(B) = n (n ³ m) olmak üzere,
A dan B ye tanımlanabilecek bire bir fonksiyonların sayısı
2. Örten Fonksiyon
Görüntü kümesi değer kümesine eşit olan fonksiyonlara örten fonksiyon denir.
f : A ® B
f(A) = B ise, f örtendir.
Ü s(A) = m olmak üzere, A dan A ya tanımlanabilen bire bir örten fonksiyonların sayısı
Ü m! = m . (m – 1) . (m – 2) ... 3 . 2 . 1 dir.
3. İçine Fonksiyon
Örten olmayan fonksiyona içine fonksiyon denir.
Ü İçine fonksiyonun değer kümesinde eşlenmemiş eleman vardır.
Ü s(A) = m olmak üzere, A dan A ya tanımlanabilen içine fonksiyonların sayısı
mm – m! dir.
4. Birim (Etkisiz) Fonksiyon
Her elemanı kendisine eşleyen fonksiyona birim fonksiyon denir.
f : IR ® IR
f(x) = x
birim (etkisiz) fonksiyondur.
Ü Birim fonksiyon genellikle I ile gösterilir.
5. Sabit Fonksiyon
Tanım kümesindeki bütün elemanları değer kümesindeki bir elemana eşleyen fonksiyona sabit fonksiyon denir.
Ü "x Î A ve c Î B için
f : A ® B
f(x) = c
fonksiyonu sabit fonksiyondur.
Ü s(A) = m, s(B) = n olmak üzere,
A dan B ye n tane sabit fonksiyon tanımlanabilir.
6. Çift ve Tek Fonksiyon
f : IR ® IR
f(– x) = f(x) ise, f fonksiyonu çift fonksiyondur.
f(– x) = – f(x) ise, f fonksiyonu tek fonksiyondur.
Ü Çift fonksiyonların grafikleri Oy eksenine göre simetriktir.
Ü Tek fonksiyonların grafikleri orijine göre simetriktir.
D. EŞİT FONKSİYON
f : A ® B
g : A ® B
"x Î A için f(x) = g(x) ise, f fonksiyonu g fonksiyonuna eşittir.
E. PERMÜTASYON FONKSİYONU
f : A ® A
olmak üzere, f fonksiyonu bire bir ve örten ise, f fonksiyonuna permütasyon fonksiyon denir.
A = {a, b, c} olmak üzere, f : A ® A
f = {(a, b), (b, c), (c, a)}
fonksiyonu permütasyon fonksiyon olup
F. TERS FONKSİYON
f fonksiyonu bire bir ve örten ise, f nin tersi olan f – 1 de fonksiyondur.
Ü Uygun koşullarda, f(a) = b Û f – 1(b) = a dır.
Ü f : IR ® IR, f(x) = ax + b ise, f – 1(x) = dır.
Ü
Ü (f – 1) – 1 = f dir.
Ü (f – 1(x)) – 1 ¹ f(x) tir.
Ü y = f(x) in belirttiği eğri ile y = f – 1(x) in belirttiği eğri y = x doğrusuna göre simetriktir.
Ü B Ì IR olmak üzere,
Ü B Ì IR olmak üzere,
G. BİLEŞKE FONKSİYON
1. Tanım
f : A ® B
g : B ® C
olmak üzere, gof : A ® C fonksiyonuna f ile g nin bileşke fonksiyonu denir ve g bileşke f diye okunur.
(gof)(x) = g[f(x)] tir.
2. Bileşke Fonksiyonun Özellikleri
i) Bileşke işleminin değişme özelliği yoktur.
fog ¹ gof
Bazı fonksiyonlar için fog= gof olabilir. Fakat bu bileşke işleminin değişme özelliği olmadığını değiştirmez.
ii) Bileşke işleminin birleşme özelliği vardır.
fo(goh) = (fog)oh = fogoh
iii) foI = Iof = f
olduğundan I(x) = x fonksiyonu bileşke işleminin birim (etkisiz) elemanıdır.
iv) fof – 1 = f – 1of = I
olduğundan f nin bileşke işlemine göre tersi f – 1 dir.
v) (fog) – 1 = g – 1of – 1 dir.

http://www.lovepowerman.net/
Yeni Başlık  Cevap Yaz



Forum Ana Sayfası  »  Matamatik
 »  Fonksiyonların tanımı

Forum Ana Sayfası

Forum Yazılımı:   php Kolay Forum (phpKF)  ©  2007 - 2010   phpKF Ekibi

Love Power Man

 RSS Beslemesini Görmek için Tıklayın   RSS Beslemesini Google Sayfama Ekle   RSS Beslemesini Yahoo Sayfama Ekle